26 research outputs found

    Structure motivator: a tool for exploring small three-dimensional elements in proteins

    Get PDF
    <br>Background: Protein structures incorporate characteristic three-dimensional elements defined by some or all of hydrogen bonding, dihedral angles and amino acid sequence. The software application, Structure Motivator, allows interactive exploration and analysis of such elements, and their resolution into sub-classes.</br> <br>Results: Structure Motivator is a standalone application with an embedded relational database of proteins that, as a starting point, can furnish the user with a palette of unclassified small peptides or a choice of pre-classified structural motifs. Alternatively the application accepts files of data generated externally. After loading, the structural elements are displayed as two-dimensional plots of dihedral angles (φ/ψ, φ/χ1 or in combination) for each residue, with visualization options to allow the conformation or amino acid composition at one residue to be viewed in the context of that at other residues. Interactive selections may then be made and structural subsets saved to file for further sub-classification or external analysis. The application has been applied both to classical motifs, such as the β-turn, and ‘non-motif’ structural elements, such as specific segments of helices.</br> <br>Conclusions: Structure Motivator allows structural biologists, whether or not they possess computational skills, to subject small structural elements in proteins to rapid interactive analysis that would otherwise require complex programming or database queries. Within a broad group of structural motifs, it facilitates the identification and separation of sub-classes with distinct stereochemical properties.</br&gt

    FlyAtlas: database of gene expression in the tissues of drosophila melanogaster

    Get PDF
    The FlyAtlas resource contains data on the expression of the genes of Drosophila melanogaster in different tissues (currently 25—17 adult and 8 larval) obtained by hybridization of messenger RNA to Affymetrix Drosophila Genome 2 microarrays. The microarray probe sets cover 13 250 Drosophila genes, detecting 12 533 in an unambiguous manner. The data underlying the original web application (http://flyatlas.org) have been restructured into a relational database and a Java servlet written to provide a new web interface, FlyAtlas 2 (http://flyatlas.gla.ac.uk/), which allows several additional queries. Users can retrieve data for individual genes or for groups of genes belonging to the same or related ontological categories. Assistance in selecting valid search terms is provided by an Ajax ‘autosuggest’ facility that polls the database as the user types. Searches can also focus on particular tissues, and data can be retrieved for the most highly expressed genes, for genes of a particular category with above-average expression or for genes with the greatest difference in expression between the larval and adult stages. A novel facility allows the database to be queried with a specific gene to find other genes with a similar pattern of expression across the different tissues

    Pathos: a web facility that uses metabolic maps to display experimental changes in metabolites identified by mass spectrometry

    Get PDF
    This work describes a freely available web-based facility which can be used to analyse raw or processed mass spectrometric data from metabolomics experiments and display the metabolites identified – and changes in their experimental abundance – in the context of the metabolic pathways in which they occur. The facility, Pathos (http://motif.gla.ac.uk/Pathos/), employs Java servlets and is underpinned by a relational database populated from the Kyoto Encyclopaedia of Genes and Genomes (KEGG). Input files can contain either raw m/z values from experiments conducted in different modes, or KEGG or MetaCyc IDs assigned by the user on the basis of the m/z values and other criteria. The textual output lists the KEGG pathways on an XHTML page according to the number of metabolites or potential metabolites that they contain. Filtering by organism is also available. For metabolic pathways of interest, the user is able to retrieve a pathway map with identified metabolites highlighted. A particular feature of Pathos is its ability to process relative quantification data for metabolites identified under different experimental conditions, and to present this in an easily comprehensible manner. Results are colour-coded according to the degree of experimental change, and bar charts of the results can be generated interactively from either the text listings or the pathway maps. The visual presentation of the output from Pathos is designed to allow the rapid identification of metabolic areas of potential interest, after which particular results may be examined in detail

    Identification of sites phosphorylated by the vaccinia virus B1R kinase in viral protein H5R

    Get PDF
    Background: Vaccinia virus gene B1R encodes a erine/threonine protein kinase. In vitro this protein kinase phosphorylates ribosomal proteins Sa and S2 and vaccinia virus protein H5R, proteins that become phosphorylated during infection. Nothing is known about the sites phosphorylated on these proteins or the general substrate specificity of the kinase. The work described is the first to address these questions. Results: Vaccinia virus protein H5R was phosphorylated by the B1R protein kinase in vitro, digested with V8 protease, and phosphopeptides separated by HPLC. The N-terminal sequence of one radioactively labelled phosphopeptide was determined and found to correspond to residues 81-87 of the protein, with Thr-84 and Thr-85 being phosphorylated. A synthetic peptide based on this region of the protein was shown to be a substrate for the B1R protein kinase, and the extent of phosphorylation was substantially decreased if either Thr residue was replaced by an Ala. Conclusions: We have identified the first phosphorylation site for the vaccinia virus B1R protein kinase. This gives important information about the substrate-specificity of the enzyme, which differs from that of other known protein kinases. It remains to be seen whether the same site is phosphorylated in vivo

    The β-link motif in protein architecture

    Get PDF
    The β-link is a composite protein motif consisting of a G1β β-bulge and a type II β-turn, and is generally found at the end of two adjacent strands of antiparallel β-sheet. The 1,2-positions of the β-bulge are also the 3,4-positions of the β-turn, with the result that the N-terminal portion of the polypeptide chain is orientated at right angles to the β-sheet. Here, it is reported that the β-link is frequently found in certain protein folds of the SCOPe structural classification at specific locations where it connects a β-sheet to another area of a protein. It is found at locations where it connects one β-sheet to another in the β-sandwich and related structures, and in small (four-, five- or six-stranded) β-barrels, where it connects two β-strands through the polypeptide chain that crosses an open end of the barrel. It is not found in larger (eight-stranded or more) β-barrels that are straightforward β-meanders. In some cases it initiates a connection between a single β-sheet and an α-helix. The β-link also provides a framework for catalysis in serine proteases, where the catalytic serine is part of a conserved β-link, and in cysteine proteases, including Mpro of human SARS-CoV-2, in which two residues of the active site are located in a conserved β-link

    An absolute polarimeter for high energy protons

    Get PDF
    A study of the spin asymmetries for polarized elastic proton proton collisions in the electromagnetic hadronic interference (CNI) region of momentum transfer provides a method of self calibration of proton polarization. The method can be extended to non-identical spin half scattering so that, in principle, the polarization of a proton may be obtained through an analysis of its elastic collision with a different polarized particle, helium 3 for instance. Sufficiently large CNI spin asymmetries provide enough information to facilitate the evaluation of nearly all the helicity amplitudes at small t as well as the polarization of both initial spin half fermions. Thus it can serve equally well as a polarimeter for helium 3

    Gluon polarization in the nucleon from quasi-real photoproduction of high-pT hadron pairs

    Get PDF
    We present a determination of the gluon polarization Delta G/G in the nucleon, based on the helicity asymmetry of quasi-real photoproduction events, Q^2<1(GeV/c)^2, with a pair of large transverse-momentum hadrons in the final state. The data were obtained by the COMPASS experiment at CERN using a 160 GeV polarized muon beam scattered on a polarized 6-LiD target. The helicity asymmetry for the selected events is = 0.002 +- 0.019(stat.) +- 0.003(syst.). From this value, we obtain in a leading-order QCD analysis Delta G/G=0.024 +- 0.089(stat.) +- 0.057(syst.) at x_g = 0.095 and mu^2 =~ 3 (GeV}/c)^2.Comment: 10 pages, 3 figure

    The Deuteron Spin-dependent Structure Function g1d and its First Moment

    Get PDF
    We present a measurement of the deuteron spin-dependent structure function g1d based on the data collected by the COMPASS experiment at CERN during the years 2002-2004. The data provide an accurate evaluation for Gamma_1^d, the first moment of g1d(x), and for the matrix element of the singlet axial current, a0. The results of QCD fits in the next to leading order (NLO) on all g1 deep inelastic scattering data are also presented. They provide two solutions with the gluon spin distribution function Delta G positive or negative, which describe the data equally well. In both cases, at Q^2 = 3 (GeV/c)^2 the first moment of Delta G is found to be of the order of 0.2 - 0.3 in absolute value.Comment: fits redone using MRST2004 instead of MRSV1998 for G(x), correlation matrix adde

    Single Spin Asymmetry ANA_N in Polarized Proton-Proton Elastic Scattering at s=200\sqrt{s}=200 GeV

    Get PDF
    We report a high precision measurement of the transverse single spin asymmetry ANA_N at the center of mass energy s=200\sqrt{s}=200 GeV in elastic proton-proton scattering by the STAR experiment at RHIC. The ANA_N was measured in the four-momentum transfer squared tt range 0.003t0.0350.003 \leqslant |t| \leqslant 0.035 \GeVcSq, the region of a significant interference between the electromagnetic and hadronic scattering amplitudes. The measured values of ANA_N and its tt-dependence are consistent with a vanishing hadronic spin-flip amplitude, thus providing strong constraints on the ratio of the single spin-flip to the non-flip amplitudes. Since the hadronic amplitude is dominated by the Pomeron amplitude at this s\sqrt{s}, we conclude that this measurement addresses the question about the presence of a hadronic spin flip due to the Pomeron exchange in polarized proton-proton elastic scattering.Comment: 12 pages, 6 figure

    Measurement of the xx- and Q2Q^2-Dependence of the Asymmetry A1A_1 on the Nucleon

    Get PDF
    We report results for the virtual photon asymmetry A1A_1 on the nucleon from new Jefferson Lab measurements. The experiment, which used the CEBAF Large Acceptance Spectrometer and longitudinally polarized proton (15^{15}NH3_3) and deuteron (15^{15}ND3_3) targets, collected data with a longitudinally polarized electron beam at energies between 1.6 GeV and 5.7 GeV. In the present paper, we concentrate on our results for A1(x,Q2)A_1(x,Q^2) and the related ratio g1/F1(x,Q2)g_1/F_1(x,Q^2) in the resonance and the deep inelastic regions for our lowest and highest beam energies, covering a range in momentum transfer Q2Q^2 from 0.05 to 5.0 GeV2^2 and in final-state invariant mass WW up to about 3 GeV. Our data show detailed structure in the resonance region, which leads to a strong Q2Q^2--dependence of A1(x,Q2)A_1(x,Q^2) for WW below 2 GeV. At higher WW, a smooth approach to the scaling limit, established by earlier experiments, can be seen, but A1(x,Q2)A_1(x,Q^2) is not strictly Q2Q^2--independent. We add significantly to the world data set at high xx, up to x=0.6x = 0.6. Our data exceed the SU(6)-symmetric quark model expectation for both the proton and the deuteron while being consistent with a negative dd-quark polarization up to our highest xx. This data setshould improve next-to-leading order (NLO) pQCD fits of the parton polarization distributions.Comment: 7 pages LaTeX, 5 figure
    corecore